年金的现值是多少?
年金的现值是给定指定的回报率或折现率的年金的未来付款的当前值。 折现率越高,年金的现值越低。
重要要点
- 年金的现值是指今天需要多少钱来资助一系列未来年金的支付。由于货币的时间价值,今天所收到的钱的价值比将来某个日期的钱还多。您可以使用现值计算来确定是现在一次性支付还是多年分配的年金来获得更多的钱。
了解年金的现值
由于金钱的时间价值,今天收到的金钱比将来的同等价值的金钱价值更高,因为它可以同时进行投资。 按照同样的逻辑,今天收到的5, 000美元比五年分期付款(每期1, 000美元)的价值还高。
货币的未来价值是使用折现率计算的。 折现率是指其他投资的利率或假定的回报率。 这些计算中使用的最小折现率是无风险收益率。 一般认为,美国国债是最接近无风险投资的事物,因此通常将其收益用于此目的。
年金的现值
年金现值示例
普通年金现值与到期年金相反的公式如下。 (普通年金在特定时期的末尾而不是在开始时支付利息,而到期年金就是这种情况。普通年金是更常见的类型。)
</ s> </ s> </ s> P = PMT×r1-((1 + r)n1)其中:P =年金流的当前值PMT =每个年金支付者的美元金额r =利率(也称为折现率)n =期数将进行哪些付款
假设某人有机会获得普通年金,该年金在接下来的25年中以6%的利率每年支付$ 50, 000,或一次性支付$ 650, 000。 哪个更好的选择? 使用上面的公式:
</ s> </ s> </ s> 现值= $ 50, 000×0.061 −((1 + 0.06)251)= $ 639, 168
有了这些信息,在经过时间调整的基础上,年金的价值将减少10, 832美元,因此该人将通过选择一次性支付年金来走在前面。
普通年金在每个时间段的末尾付款,而到期年金在开始时付款。 在其他所有条件相同的情况下,年金将价值更高。
由于年金到期,在每个期间的开始付款,因此公式略有不同。 要查找到期年金的值,只需将以上公式乘以(1 + r)的系数即可:
</ s> </ s> </ s> P = PMT×r1-(((1 + r)n1))×(1 + r)
因此,如果上面的示例提到的是年金而不是普通年金,则其价值如下:
</ s> </ s> </ s> 现值= $ 50, 000×0.061 −((1 + 0.06)251)×(1 +.06)= $ 677, 518
在这种情况下,该人应选择到期的年金,因为该年金比$ 650, 000的一次性总值高$ 27, 518。