什么是双向方差分析?
双向ANOVA检验是一种统计检验,用于确定两个名义预测变量对连续结果变量的影响。 方差分析代表方差分析,并测试自变量对因变量的影响是否存在差异。
双向方差分析测试两个独立变量对因变量的影响。 双向ANOVA检验分析了独立变量对预期结果的影响以及它们与结果本身的关系。 随机因素将被视为对数据集没有统计影响,而系统因素将被视为具有统计意义。
通过使用方差分析,研究人员可以确定结果的可变性是由于偶然还是由于分析中的因素。 方差分析在金融,经济学,科学,医学和社会科学中有许多应用。
双向方差分析的基础
方差分析测试是确定影响给定结果的因素的第一步。 一旦执行了ANOVA测试,测试人员就可以对统计上有助于数据集可变性的系统因素进行进一步分析。 双向ANOVA检验揭示了因变量上两个自变量的结果。 然后,可以将ANOVA测试结果用于F检验中,以求整体回归公式的显着性。
方差分析有助于测试变量之间的相互影响。 它类似于多个两次样本t检验。 但是,它导致类型1错误更少,并且适用于一系列问题。 方差分析通过比较每个组的均值来对差异进行分组,包括将方差扩展到不同的来源。 它与对象,测试组,组之间和组内一起使用。
重要要点
- 双向ANOVA是单向ANOVA(方差分析)的扩展,它揭示了因变量上两个自变量的结果。双向ANOVA检验是一种统计技术,用于分析自变量的影响预期结果及其与结果本身的关系。方差分析在金融与经济学,科学,医学和社会科学中有许多应用。
方差分析和双向方差分析之间的区别
有两种类型的方差分析:单向(或单向)和双向(双向)。 单向或双向是指方差分析测试中自变量的数量。 单向方差分析评估唯一因素对唯一响应变量的影响。 它确定所有样本是否都相同。 单向方差分析用于确定三个或更多独立(不相关)组的均值之间在统计上是否存在显着差异。
双向ANOVA是单向ANOVA的扩展。 对于单向,您将拥有一个影响因变量的自变量。 使用双向ANOVA,有两个独立变量。 例如,双向方差分析允许公司基于两个独立变量(例如工资和技能集)比较工人的生产率。 它被用来观察两个因素之间的相互作用。 它同时测试两个因素的影响。
三向ANOVA(也称为三因素ANOVA)是确定三个因素对结果影响的统计手段。