目录
- 什么是股息折扣模型?
- 了解DDM
- 金钱的时间价值
- 预期股息
- 折现因子
- DDM公式
- DDM版本
- DDM的示例
- DDM的缺点
- 使用DDM进行投资
什么是股息折扣模型?
股利折价模型(DDM)是一种定量方法,它基于以下理论来预测公司股票的价格:当期股价折现至其现值时,其当日价值得其所有未来股利支付之和。 它试图计算股票的公允价值,而不考虑当前的市场条件,并考虑了股利支付因素和市场预期收益。 如果从DDM获得的价值高于股票的当前交易价格,则该股票被低估并符合购买条件,反之亦然。
股利折现模型
了解DDM
公司生产商品或提供服务以赚取利润。 从此类业务活动中获得的现金流量决定了其利润,这反映在公司的股价中。 公司还向股东支付股息,这通常来自商业利润。 DDM模型基于这样的理论:公司的价值是其所有未来股息支付之和的现值。
金钱的时间价值
想象一下,您以无息贷款将100美元赠予了您的朋友。 一段时间后,您去找他收取借来的钱。 您的朋友给您两个选择:
- 立即拿$ 100一年后拿$ 100
大多数人会选择第一选择。 现在取钱将使您可以将其存入银行。 如果银行支付名义利息,例如5%,那么一年后,您的钱将增长到105美元。 它将比第二种选择更好,第二种选择是一年后从您的朋友那里获得100美元。 数学上
</ s> </ s> </ s> 未来价值=当前价值∗(1+利率%)
上面的示例指示了货币的时间价值,可以将其总结为“货币的价值取决于时间”。换种方式来看,如果您知道资产或应收款的未来价值,则可以通过以下方式计算其现值:使用相同的利率模型。
重新排列方程式
</ s> </ s> </ s> 当前价值=(1+利率%)未来价值
本质上,给定任何两个因素,就可以计算出第三个因素。
股息折扣模型使用此原理。 它采用公司将来会产生的现金流量的期望值,并从货币时间价值(TVM)的概念中得出其净现值(NPV)。 从本质上讲,DDM建立在对公司预期将支付的所有未来股息的总和上,并使用净利率因子(也称为折现率)计算其现值。
预期股息
估计公司的未来股息可能是一项复杂的任务。 分析师和投资者可能会做出某些假设,或者尝试根据过去的股息支付历史来确定趋势,以估计未来的股息。
可以假设公司具有固定的股息增长率,直到永久存续,这是指在无限长的时间内没有结束日期的恒定现金流量。 例如,如果一家公司今年已派发每股1美元的股息,并有望保持5%的股息派发增长率,则明年的股息预计将为1.05美元。
或者,如果发现某个趋势(例如,过去四年中派发股利$ 2.00,$ 2.50,$ 3.00和$ 3.50的公司),则可以假设今年的股利为$ 4.00。 这种期望的股息在数学上由(D)表示。
折现因子
将钱投资于股票的股东会冒险,因为他们购买的股票可能会贬值。 面对这种风险,他们期望得到回报/补偿。 与房东将他的财产出租来出租类似,股票投资者充当公司的放债人,并期望一定的回报率。 企业的股本成本代表了市场和投资者对资产的所有权和承担所有权风险的补偿。 该回报率用(r)表示,可以使用资本资产定价模型(CAPM)或股息增长模型进行估算。 但是,只有在投资者出售其股票时才能实现这种回报率。 所需的回报率可能会因投资者的判断而有所不同。
支付股息的公司以一定的年利率支付,用(g)表示。 回报率减去股息增长率(r-g)代表公司股息的有效折现系数。 股利由股东支付并实现。 可以通过将股本回报率(ROE)乘以保留率(后者与股息支付率相反)来估算股息增长率。 由于股息是从公司产生的收益中提取的,因此理想情况下它不能超过收益。 总体股票的回报率必须高于未来几年的股息增长率,否则,该模型可能无法维持下去,并导致负股票价格的结果在现实中不可能实现。
DDM公式
根据每股预期股息和净折现因子,使用股息折现模型对股票进行估值的公式在数学上表示为:
</ s> </ s> </ s> 股票价值=(CCE-DGR)EDPS其中:EDPS =每股预期股息CCE =资本权益成本
由于公式中使用的变量包括每股股息,净折现率(由所需的回报率或权益成本以及预期的股息增长率表示),因此它带有某些假设。
由于股息及其增长率是公式的关键输入,因此DDM被认为仅适用于派发定期股息的公司。 但是,通过假设它们本应支付多少股息,仍然可以将其应用于不支付股息的股票。
DDM版本
DDM具有许多复杂度不同的变体。 虽然对于大多数公司而言并不准确,但最简单的股息折现模型迭代假设股息增长为零,在这种情况下,股票的价值就是股息价值除以预期回报率。
DDM的最常见,最直接的计算方法是Gordon增长模型(GGM),该模型假定股息增长率稳定,并在1960年代以美国经济学家Myron J. Gordon的名字命名。 该模型假设股息年复一年稳定增长。 为了找到支付股息的股票的价格,GMG考虑了三个变量:
</ s> </ s> </ s> D =下一年度股息的估计价值=公司的资本权益成本
使用这些变量,GGM的方程式为:
</ s> </ s> </ s> 每股价格= r-gD
存在第三个变体,即超常股利增长模型,该模型考虑了高增长时期之后是较低的恒定增长时期。 在高增长期,可以将每笔股息金额折现至当期。 对于恒定增长期,计算遵循GGM模型。 将所有这些计算出的因子相加得出股票价格。
DDM的示例
假设X公司今年支付了每股1.80美元的股息。 该公司预计股息将以每年5%的速度持续增长,该公司的股本成本为7%。 1.80美元的股息是今年的股息,需要根据增长率进行调整以找到D 1 ,即明年的估计股息。 计算公式为:D 1 = D 0 x(1 + g)= 1.80美元x(1 + 5%)= 1.89美元。 接下来,使用GGM,发现X公司的每股价格为D(1)/(r-g)= $ 1.89 /(7%-5%)= $ 94.50。
查看领先的美国零售商沃尔玛公司(WMT)的股息支付历史记录,可以发现该公司已按时间顺序在2014年1月至2018年1月之间支付了总计1.92美元,1.96美元,2.00美元,2.04美元和2.08美元的年度股息。 可以看到,沃尔玛的股息每年持续增长4美分的模式,这相当于平均增长约2%。 假设投资者的要求回报率为5%。 使用2019年初的估计股息$ 2.12,投资者将使用股息折扣模型计算出每股价值$ 2.12 /(.05-.02)= $ 70.67。
DDM的缺点
虽然DDM的GGM方法被广泛使用,但它有两个众所周知的缺点。 该模型假设永久性股息增长率恒定。 对于非常成熟的,有定期派息历史的公司来说,这种假设通常是安全的。 但是,DDM可能不是评估股息增长率波动或根本没有股息的新兴公司的最佳模型。 人们仍然可以在这样的公司上使用DDM,但是随着越来越多的假设,精度会降低。
DDM的第二个问题是输出对输入非常敏感。 例如,在上面的“公司X”示例中,如果将股息增长率降低10%至4.5%,则得出的股价为75.24美元,比先前计算的价格94.50美元下降了20%以上。
当公司的回报率(r)低于股息增长率(g)时,该模型也会失效。 当公司继续派发股息时,即使发生亏损或收益相对较低,也可能会发生这种情况。
使用DDM进行投资
所有DDM变体,尤其是GGM,都允许在不考虑当前市场条件的情况下评估股票。 它还有助于在公司之间进行直接比较,即使它们属于不同的行业。
相信基本原理(即股票的当前内在价值代表其未来股息支付的折现值)的投资者可以将其用于识别超买或超卖的股票。 如果计算得出的价格高于股票的当前市场价格,则表明购买机会,因为该股票的交易价格低于DDM规定的公允价值。
但是,应该注意的是,DDM是大量股票评估工具中可用的另一种定量工具。 像用于确定股票内在价值的任何其他估值方法一样,除了其他几种常用的股票估值方法外,还可以使用DDM。 由于它需要大量的假设和预测,因此它可能不是制定投资决策的唯一最佳方法。