什么是凸度调整?
凸度调整是为了获得预期的未来利率或收益率而需要对远期利率或收益率进行的更改。 凸度调整是指远期利率与未来利率之差; 必须将这种差异添加到前者中才能得出后者。 由于债券价格与收益率之间存在非线性关系,因此需要进行这种调整。
凸度调整的公式为
</ s> </ s> </ s> CA = CV×100×(Δy)2其中:CV =债券的凸度Δy=产量变化
凸度调整会告诉您什么?
凸性是指在基础变量的价格或利率发生变化的情况下,输出价格的非线性变化。 相反,输出价格取决于二阶导数。 就债券而言,凸度是债券价格相对于利率的二阶导数。
债券价格与利率成反比,即利率上升,债券价格下降,反之亦然。 换句话说,价格与收益之间的关系不是线性的,而是凸的。 为了衡量由于经济中现行利率变化而产生的利率风险,可以计算债券的期限。
期限是息票支付和本金还款的现值的加权平均值。 它以年为单位进行度量,并估计利率小幅变化的债券价格的变化百分比。 可以将持续时间视为衡量其他非线性函数线性变化的工具。
凸度是持续时间沿着收益率曲线变化的速率,因此是持续时间方程的一阶导数,价格收益函数或债券价格随变化的函数的方程的二阶导数利率。
由于由于收益率曲线的凸性,使用持续时间估算的价格变化可能无法精确地反映收益率的大变化,因此凸度有助于近似未用持续时间捕获或解释的价格变化。
凸度调整考虑了收益率曲线中显示的价格-收益率关系的曲率,以便为较大的利率变化估算更准确的价格。 为了改进持续时间提供的估计,可以使用凸度调整措施。
如何使用凸度调整的示例
看一下如何应用凸度调整的以下示例:
</ s> </ s> </ s> AMD =-持续时间×收益率变化,其中:AMD =年度修改的持续时间
</ s> </ s> </ s> CA = 21×BC×收益率变化2其中:CA =凸度调整BC =债券的凸度
假定债券的年度凸度为780,年度修改期限为25.00。 到期收益率为2.5%,预计将提高100个基点(bps):
</ s> </ s> </ s> AMD = −25×0.01 = −0.25 = −25%
请注意,100个基点等于1%。
</ s> </ s> </ s> CA = 21×780×0.012 = 0.039 = 3.9%
收益率增加100个基点后,债券的估计价格变化为:
</ s> </ s> </ s> 年持续时间+ CA = −25%+ 3.9%= − 21.1%
请记住,产量增加会导致价格下降,反之亦然。 在对债券,利率掉期合约和其他衍生产品定价时,经常需要对凸度进行调整。 由于债券价格相对于利率或收益率的变化不对称,因此需要进行此调整。
换句话说,在利率或收益率确定下降的情况下,债券价格的涨幅始终大于在利率或收益率相同的情况下债券价格的下降幅度。 许多因素会影响债券的凸性,包括其票面利率,期限,到期日和当前价格。